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Abstract

The genetic basis of complex diseases is expected to be highly heterogeneous, with complex interactions among multiple disease loci

and environment factors. Due to the multi-dimensional property of interactions among large number of genetic loci, efficient statistical

approach has not been well developed to handle the high-order epistatic complexity. In this article, we introduce a new approach for

testing genetic epistasis in multiple loci using an entropy-based statistic for a case-only design. The entropy-based statistic asymptotically

follows a w2 distribution. Computer simulations show that the entropy-based approach has better control of type I error and higher

power compared to the standard w2 test. Motivated by a schizophrenia data set, we propose a method for measuring and testing the

relative entropy of a clinical phenotype, through which one can test the contribution or interaction of multiple disease loci to a clinical

phenotype. A sequential forward selection procedure is proposed to construct a genetic interaction network which is illustrated through a

tree-based diagram. The network information clearly shows the relative importance of a set of genetic loci on a clinical phenotype. To

show the utility of the new entropy-based approach, it is applied to analyze two real data sets, a schizophrenia data set and a published

malaria data set. Our approach provides a fast and testable framework for genetic epistasis study in a case-only design.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the major goals of modern biomedical research is
to understand the function of genes underlying physical
manifestation of an organism (Macdonald and Long,
2005). To achieve this objective, studies have long-time
been framed within the content of discovering associations
between genetic markers and biological phenotypes (Jud-
son et al., 2002). Due to unknown disease etiologies and
complex heterogeneities, however, searching for causative
genes underlying complex diseases has not been quite
successful. The complicated functional mechanism among
genes underlying complex diseases presents great chal-
lenges. For example, Strohman (2002) recently reported
that human disease phenotypes are influenced not only by
e front matter r 2007 Elsevier Ltd. All rights reserved.
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DNA variations but also by self-organizing networks and
system dynamics. Understanding how genomic informa-
tion underlies the development of complex human diseases,
thus, has been one of the greatest challenges in the 21st
century (Zhao et al., 2006). The availability of complete
human sequence information, relatively cost-efficient high-
throughput genotyping technologies, and powerful statis-
tical methods, provide promising future in unravelling the
genetic secrets of complex human diseases.
It is well known that most human diseases are complex

which are typically caused by multiple factors, including
main effects of multiple genes, complicated gene–gene as
well as gene–environment interactions (Zhao et al., 2006).
Gene–gene interaction, or epistasis, plays a pivotal role in
shaping an organism development, as well as contributing
to a complex disease. Examples of epistasis have been
identified. For example, a group of scientists recently found
that the interaction in mutations between RET and
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EDNRB genes was associated with Hirschsprung diseases
(Carrasquillo et al., 2002). For another example, studies
employing model organisms such as Drosophilla melano-

gaster and Saccharomyces cerevisiae (yeast) have suggested
that epistasis occurs frequently, involving multiple loci
(genes), and in some cases produces effects as large as the
main effects at individual loci (Brem et al., 2005). While
identifying gene interactions using biological techniques is
time and money-consuming, statistical approaches have
been proven to be alternative efficient tools for elucidating
the interaction mechanism in a variety of settings (Nelson
et al., 2001; Ritchie et al., 2001; Moore and Hahn, 2002;
Soares et al., 2005).

Case-control design has been the most commonly used
design in genetic association studies. It can also be applied
to test gene–gene interaction. Recent research has shown
that gene–gene interaction can also be tested with a case-
only design (Yang et al., 1999). One of the advantages of
case-only design is that it requires fewer sample size than a
case-control design for testing genetic epistasis (Gauder-
man, 2002), which consequently eliminates estimation
biases when selecting controls in a case-control design
and can potentially save resources. One commonly applied
approach for testing epistasis in a case-only design is to
apply a simple w2 test (Gauderman, 2002). When a
particular disease is associated with several clinical
phenotypes (i.e., clinical symptoms) which are the results
of complex interactions among a group of genes, the w2 test
can not serve as the purpose to identify which set of disease
loci contributing to a clinical phenotype. For instance, the
schizophrenia disease is a complex disorder which shows
several clinical phenotypes such as delusions or conceptual
disorganization (Andreasen, 2000). The variation of each
clinical phenotype could be explained by a unique set of
genes functioning in a complex epistatic way. The w2 test
may not be appropriate for testing such an association. To
enhance the power of testing epistasis under a case-only
design framework, in this paper, we introduce a new
entropy-based approach in a case-only design for testing
gene–gene interactions under the assumption of linkage
equilibrium (LE) among loci. The entropy is commonly
used in information theory to measure the uncertainty of
random variables (Shannon, 1948) and has been applied to
different subjects in biology (Ackerman et al., 2003;
Hampe et al., 2003; Jawaheer et al., 2002; Kang and
Zuo, 2007; Mihalek et al., 2004; Zhao et al., 2005) and
other fields (Kang et al., 2007; Kubat et al., 2007). An
entropy measure represents a non-linear transformation of
interested variables. We derive an entropy-based statistic to
test gene interactions. The entropy-based test is further
extended to test the association between a set of disease loci
and a specific clinical phenotype. We deal with multiple
interactive loci as a locus-system, with joint genotypes as its
microstates and clinical phenotypes as its macrostates, a
similar idea presented in statistical physics (Cover and
Thomas, 1991). The interactions among multiple loci can
be defined as the deviance of the entropy at one locus-
system from that of the same locus-system assuming
independence. The type I error rate and power of the
new entropy approach are evaluated through Monte Carlo
simulations and are compared with the standard w2 test.
Finally, we apply the new approach to two real data sets.
The advantages and limitations of the entropy-based
approach are discussed.

2. Methods

2.1. Entropy and entropy epistasis measure

The Shannon entropy (S) of a discrete random variable
X is defined as

SðX Þ ¼ �
X

i

pðxiÞ log pðxiÞ, (1)

where pðxiÞ ¼ ProbðX ¼ xiÞ. Define a set of genes or loci as
a genetic-locus system which is referred to as a ‘‘micro-
state’’, a term used in statistical physics to measure an
individual state of a system, such as a particular path taken
by a random walk (Greiner et al., 1995). Correspondingly,
a particular disease status can be defined as a ‘‘macrostate’’
which is the physical manifestation of the complex
interactions among a group of disease genes (or micro-
state). Therefore, by measuring the entropy of a set of
genes, we can test the epistasis associated with a particular
disease.
It is well known that the equilibrium state of a system is

the state that all microstates in this system have the same
chance to occur (Greiner et al., 1995). For a genetic-locus
system, an equilibrium state refers to independence among
disease loci. Under the assumption of linkage equilibrium,
the system is likely to maintain an equilibrium state with
maximum entropy. A deviation from the equilibrium state
(independence) represents a gain in order structure, which
consequently results in decreased entropy compared to the
equilibrium state. Therefore, if the difference between the
state of independence and the state due to interaction in
entropy for a set of loci is significant, a conclusion of
significant interaction can be reached. This is the basic idea
that motivates us to derive the following entropy-based test
procedure. To illustrate the idea, we first start with two
loci. A generalization is given later. We refer to a subset of
disease loci as a locus system with joint genotypes as its
microstates. Assume two loci in linkage equilibrium with
M1 having two allele A and a, M2 having two alleles B and
b. At locus M1, there are three possible genotypes denoted
as AA (2), Aa (1) and aa (0) with frequencies denoted as p1

2,
p1
1 and p1

0. Similarly there are three genotypes with
frequencies p2

2, p2
1 and p2

0 at locus M2. Here the superscript
denotes the identification of each locus and the subscript
denotes different genotypes at a locus. The genotypic
combination at these two loci forms 32 joint genotypes
expressed as h1 ¼ 22, h2 ¼ 21, h3 ¼ 20, h4 ¼ 12, h5 ¼ 11,
h6 ¼ 10, h7 ¼ 02, h8 ¼ 01 and h9 ¼ 00. The frequencies of
these nine joint genotypes are denoted by p1, p2, p3, p4, p5,
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p6, p7, p8 and p9, respectively. Thus, under the null
hypothesis of no interaction, the frequency of joint
genotype is just a product of their corresponding geno-
types. For example, the frequency of the joint genotype
h1ð¼ 22Þ is expressed as q1 ¼ p1

2p
2
2. So, the entropy under

the null hypothesis of no interaction for two disease loci is
defined as Sind ¼ �

P9
i¼1 qi log qi: And the observed en-

tropy for two disease loci is Sobserve ¼ �
P9

i¼1 pi log pi.
Next, we generalize the entropy measure to multiple loci,

each with two alleles. Suppose there are sX2 disease loci,
with each locus consisting of three possible genotypes
denoted as 0, 1 or 2. This locus system with s disease
loci forms 3s joint genotypes denoted as hi

¼

ðhi
1; h

i
2; . . . ; h

i
sÞ 2 f0; 1; 2g

s, where hi
k ð¼ 0; 1 or 2Þ denotes

the genotype of the kth ð1pkpsÞ disease locus at the ith
joint genotype, 1pip3s.

Let us define

xði; j; kÞ ¼
1 if hi

k ¼ j;

0 if hi
kaj;

(
(2)

where j ¼ 0; 1 or 2. Under the null hypothesis of no
interaction, the frequency of the ith joint genotype can be
expressed as the product of the marginal genotype
frequencies,

qi ¼ phi ¼
Ys

k¼1

p
xði;2;kÞ
ðk;2Þ p

xði;1;kÞ
ðk;1Þ p

xði;0;kÞ
ðk;0Þ , (3)

where qi ¼ phi denotes the frequency of the ith joint
genotype under the null hypothesis of no interaction,
pðk;0Þ ¼ 1� pðk;2Þ � pðk;1Þ, pðk;gÞ denotes the frequency of
genotype g at the kth disease locus.

The entropy under the null hypothesis of no interaction
for s disease loci is expressed as Sind ¼ �

P3s

i¼1 qi log qi.
Note that missing joint genotypes with frequencies of zero
do not contribute to the entropy S. Also for rare genotype,
qi approaches zero which leads to qi log qi approaching
zero, and consequently rare genotypes do not contribute to
the entropy measure S too.

Similarly, the observed entropy of a set of SNP markers
can be expressed as Sobserve ¼ �

P3s

i¼1 pi log pi, where pi is
the observed frequency of the ith joint genotype. If there
are no interactions among multiple disease loci, the
difference between the state of independence and the state
of interaction in entropy will be zero.
2.2. The entropy-based statistic for epistasis test

We focus our attention in this section to derive an
entropy-based statistic for testing interactions among
multiple disease loci. A measure for the system’s deviation
from the equilibrium state (i.e., no interaction) is given as

DS ¼ Sind � Sobserve. (4)

Therefore, rejection of the null hypothesis H0 : DS ¼ 0
indicates interaction among disease loci.
To quantify the magnitude of interaction among multi-
ple disease loci in a normalized scale, we define a new
measure (I) among these s loci as I ¼ 1� Sobserve

Sind
. Clearly,

absence of interaction among s loci, i.e., Sind ¼ Sobserve,
leads to I ¼ 0 which provides the same information as
DS ¼ 0. A plot of I against a measure such as allele
frequency can provide useful information about a systema-
tic derivation from independence to interaction in entropy
at a locus system. It can be shown that 2nDDS�w23s�2s�1

holds under the null hypothesis of no interaction, where nD

is the sample size for affected individuals. This statistic
2nDDS is referred to as the ‘‘entropy-based statistic’’. Let
Lobserve denote the likelihood of the observed joint
genotypes of a locus system, and Lind denote the likelihood
of the joint genotypes defined by the marginal frequencies
under no interaction, where Lobserve and Lind can be derived
based on a multinomial distribution. Then it can be shown
that (see Appendix A for details) DS ¼ 1

nD log
Lobserve

Lind
:

Following the result of Wilks (1962), we get
2nDDS�w23s�2s�1.
2.3. The relative entropy-based test for testing the

association between disease loci and clinical phenotypes

Generally, a complex disease may show many symptoms
in clinic. For example, conceptual disorganization and
delusions are two symptoms for a person diagnosed to
have schizophrenia. These clinical symptoms are referred
to as clinical phenotypes in this section, and may be
associated with different sets of genes as well as interac-
tions among these genes. In this section, we derive a
relative entropy-based test statistic to quantify and further
test the association between clinical phenotypes and disease
loci.
From the previous section, we know that the joint

genotypes among a set of disease loci in a locus system can
be considered as microstates. Based on the entropy theory,
a clinical phenotype can be viewed as a macrostate
corresponding to a disease locus system. Therefore, we
can link these two states and treat a macroscopical clinical
phenotype as a functional result of many loci or genes
(many microstates). Study shows that many schizophrenia
individuals with positive syndromes almost share the same
positive clinical symptoms (Andreasen et al., 1994). But
how to test which set of genes (or loci) interact to
contribute to an associated clinical phenotype remains
unclear in literatures.
A clinical phenotype is often measured as categorical

data to indicate the severity of a symptom. For example, a
score of 0 might indicate no symptom and high scores
might indicate severe cases. It also could be measured as
binary with 0 and 1 indicating no symptom and symptom,
respectively. Our testing model will be derived based on
binary clinical phenotypes. For a categorical clinical
phenotype, we can code it as 1 if a score is greater than
or equal to 1, and 0 otherwise.
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Table 1

Two-locus models of disease

BB Bb bb

Model 1: two-locus multiplicative interaction

AA gð1þ yÞ4 gð1þ yÞ2 g
Aa gð1þ yÞ2 gð1þ yÞ g
aa g g g

Model 2: two-locus threshold interaction

AA gð1þ yÞ gð1þ yÞ g
Aa gð1þ yÞ gð1þ yÞ g
aa g g g

Model 1 refers to a two-locus multiplicative. In this model, the odds of

disease have a baseline value ðgÞ and increase multiplicatively once there is

at least one disease allele at each disease locus. Model 2 refers to a two-

locus threshold model. In this model, the odds of disease also have a

baseline value ðgÞ unless a disease allele is present at each locus. Once this

threshold is reached, the odds of disease increase to ðgð1þ yÞÞ; y is

genotypic effect (6).
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Consider s disease loci and a clinical phenotype C. To
test the association, we start with a subset with w disease
loci as a locus system. Let fhi

g3
w

i¼1 be 3w joint genotypes in
this locus system, KD be the sample size with a clinical
phenotype C, and kD

i be the number of individuals with
joint genotype hi in KD.

The relative entropy of an associated clinical phenotype
C is defined as

SðCÞ ¼
�
PW

i¼1
kD

i

KD log
kD

i

KD

�
PW

i¼1
1

W
log 1

W

if W41;

0 if W ¼ 1;

8>><
>>: (5)

where Wp3w is the number of actually observed joint
genotypes in this locus system, w is the number of loci in
this locus-system. The maximum entropy is obtained when
all joint genotypes are uniformly distributed with frequency
of 1=W . Therefore, if all joint genotypes in this locus
system are evenly distributed (this system is in the
equilibrium state), then SðCÞ ¼ 1 which corresponds to
the null hypothesis of no association. Otherwise, if a single
joint genotype is far more frequent than other joint
genotypes, then SðCÞ approaches 0. Therefore, the smaller
the relative entropy, the higher the chance that a clinical
phenotype is associated with these w set of disease loci.

In fact, the relative entropy of a clinical phenotype is
related to the likelihood L of a multinomial distribution of
joint genotypes in this locus system. The relationship
between L and SðCÞ can be shown as (see Appendix B for
details) L ¼ e�KDSðCÞ logW : Clearly, the likelihood distribu-
tion of the locus system increases as the relative entropy of
a clinical phenotype decreases. This satisfies the maximum
likelihood principle. So, we identify a subset of loci with
maximum likelihood value (or the minimum relative
entropy) as a set of loci that interact to contribute to this
clinical phenotype C.

To test the association among w loci associated with a
clinical phenotype C, we introduce a new relative entropy-
based statistic which has the form

EP ¼ 2KDð1� SðCÞÞ logW . (6)

It can be easily shown that the test statistic EP is
asymptotically distributed as a central w2W�1 distribution
under the null hypothesis of no association.

To search for subsets of disease loci associated with a
clinical phenotype, we use a sequential forward selection
approach. The algorithm starts with one disease locus to
compute the test statistic EP for all possible combinations
at the w loci and test the association. There might be
several set of combinations significantly associated with a
clinical phenotype. Those significant combinations in the
earlier step are then kept in the model and another locus is
added to the model for association test. The search is
stopped when an additional adding has no significant
contribution to the test statistic. Finally, we may have one
or more locus combinations significantly associated with a
clinical phenotype. This can be explained by the locus
heterogeneity of a complex disease in which the interaction
pattern among different loci might have different contribu-
tions to a clinical phenotype. We can then identify the most
commonly appeared loci among a set of significant
combinations. This set of loci is defined as the most
functional ones interacting with other loci to contribute to
a clinical phenotype. A sequential interactive network
structure can be displayed using a tree diagram.

3. Results

3.1. Monte Carlo simulation

In this section we conduct Monte Carlo simulations to
demonstrate the entropy test approach. For more informa-
tion about simulations based on entropy, readers are
referred to the literatures (Carlacci and Chou, 1990; Zhang
and Chou, 1992, 1995). We consider two disease loci (i.e.
s ¼ 2) and assume that they are in LE. Let A and B be the
two risk alleles at the first and second disease loci, with
frequencies PA and PB, respectively. Let gA and gB denote
the genotypes at the first and second disease loci,
respectively, i.e., gA; gB 2 f0; 1; 2g. These two-locus geno-
types are simply denoted by gAgB with frequency denoted
as PgAgB

. Let f gAgB
be the penetrance for genotype gAgB.

Then, the disease prevalence is defined by

PðDÞ ¼ P2
AP2

Bf 00 þ 2P2
APBPbf 01 þ P2

AP2
bf 02

þ 2PAPaP2
Bf 10 þ 4PAPaPBPbf 11 þ 2PAPaP2

bf 12

þ P2
aP2

Bf 20 þ 2P2
aPBPbf 21 þ P2

aP2
bf 22, ð7Þ

where f gAgB
can be obtained by the disease model (Table 1).

So, the frequencies of genotype gAgB in cases (Appendix C)
can be expressed as

PðgAgBjDÞ ¼
f gAgB

PgAgB

PðDÞ
; 0pgA; gBp2. (8)
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A total of 10,000 simulations are performed. Genotype
data for multiple loci (s42) can be simulated in similar
way.

3.1.1. Distributions of the test statistics and interaction

measure

In the previous section, we have shown that when the
sample size approaches infinity to apply asymptotic theory,
the distribution of the entropy-based statistic 2nDD under
the null hypothesis asymptotically follows a central w2

distribution. To examine the small sample performance of
the entropy-based test statistic under the null hypothesis of
no interaction, we generate 150 cases at random with
genotypes simulated according to the distribution of (8).
0 5 10 15 20 25 30
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Fig. 1. Null distributions of the test statistic 2nDDS from simulated 150

case individuals. w2ð4Þ indicates w
2 distribution with 4 df .
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Fig. 2. Type I error rates of the test statistics 2nDDS and w2 in testing

interaction between two disease loci. The type I error is calculated as the

percentage of the number of simulations in which no significant

interactions are detected. The result is obtained from 10,000 simulations.
Fig. 1 plots the histograms of the test statistic 2nDDS

for a two-SNP interaction model. It is clear that the
distribution of 2nDDS is similar to the asymptotic w2

distribution with 4 degree of freedom. We further com-
pare the estimated type I error rate of the entropy-based
test and the standard w2 test under different sample sizes
for testing interaction (Fig. 2). The plot shows that the
estimated type I error rates (at the significant level 0.05)
of the proposed entropy-based test are close to the
nominal level as sample size increases. Also, the new
test has slightly better type I error control than the
standard w2 test.
Fig. 3 plots the degree of interaction (I) between two loci

as a function of allele frequencies (A) and genotypic effects
(B). The dashed line refers to the multiplicative model and
the solid line is for the threshold model (Table 1). The
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Fig. 3. Measure of interaction between two loci as a function of allele

frequencies at two loci under two genetic models, where the baseline and

the genotype effect are 0.01 and 2, respectively (A); and as a function of

genotypic effects at two loci under the conditions that the minor allele

frequencies at two loci are 0.3 and the baseline effect is 0.01 (B).
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baseline effect is defined as g ¼ 0:01 and the baseline
genotypic effect is given as y ¼ 2. The allele frequencies in
Fig. 3A are the minor allele frequencies for alleles A and B.
The results show that the interactions are stronger for the
multiplicative model than the threshold model under
different situations. The measure of interaction is a
monotonic function of the genotypic effects. However,
when the genotype effect is fixed, it shows a quadratic
function of allele frequency. Therefore, the measure of
interaction depends on both disease models and allele
frequencies at two loci.

To check the asymptotic distribution of the test statistic
EP for testing association between a set of genetic loci
and a clinical phenotype C, we simulate 250 cases which
have a common clinical phenotype. Fig. 6 plots the
histograms of the test statistic EP for testing association
between two loci and a clinical phenotype C under the
condition that the number of present joint genotypes are 6
and 9, respectively. It can be seen that the distributions of
the test statistic EP are similar to the theoretical central w2

distribution.

3.1.2. Power evaluation

To evaluate the performance of the proposed statistic,
we compare the power of entropy-based statistic with that
of the standard w2. Fig. 4 plots the power to detect
interaction for two loci as a function of sample size for
fixed genotypic and baseline effects (A and B) and as a
function of genotypic effect for fixed sample size and
baseline effect (C and D). The minor allele frequency is
100 120 140 160 180 200
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Fig. 4. Power of the test statistic 2nDDS as a function of sample sizes for fix

threshold model (B), and as a function of genotypic effects for fixed baseline eff

(D) between two loci. The minor allele frequency at two loci in the disease po
fixed at 0.25 at two loci under the two genetic models,
multiplicative and threshold. It can be seen that the sample
size has a great impact on the testing power. The power
increases as sample size increases for both the entropy-
based and w2 test. For example, the power is about 50%
when sample size is 100 and it increases to nearly 90%
when sample size increases to 200 for the multiplicative
model (Fig. 4A). Similar trend is also observed for the
threshold model. We also observed a consistent trend that
the entropy-based test outperforms the standard w2 test.
The effect of genetic models on testing power can also be
clearly seen from the plot in which the multiplicative model
always has high power than the threshold model for fixed
sample size and genotypic effect. For example, when
sample size is fixed at 200, the multiplicative model has
almost 90% power, while the threshold model only has
50% power.
Intuitively, the degree of genetic interaction measured by

I should have a direct effect on the testing power, where we
expect high power to test the interaction when I is large.
Fig. 5 shows the effect of I on the power. We fix the allele
frequency (0.10 in Fig. 5A and 0.30 in Fig. 5B) and the
baseline effect, and change I by adjusting the genotypic
effect. It is clearly seen that as the measure of interaction
increases, the power increases. The multiplicative model
displays higher power than the threshold model. These
results are consistent with the underlying model since
the multiplicative model has stronger interaction effect
than the threshold model given positive genotypic
effect (Table 1).
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Fig. 5. Power of the test statistic 2nDDS as a function of the interaction

measure between two loci under two genetic models, multiplicative and

threshold. The minor allele frequency at two loci are 0.10 (A) and 0.30 (B).

The significance level is 0.05 and the sample size is 200.
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Fig. 6. Null distributions of the test statistic EP with 250 simulated

individuals having a clinical phenotype under the condition that the

numbers of present microstates in two-locus system are 6 and 9,

respectively. w2ð5Þ and w2ð8Þ indicate w2 distribution with 5 and 8 df .
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In a short summary, our entropy-based test has better
control of the type I error rate and has higher power
compared to the standard w2 test for testing genetic
interactions under a number of situations. Our simulation
results also confirm that the asymptotic distribution of the
proposed test statistic follows a w2 distribution when testing
genetic interactions, as well as testing the association
between disease loci and clinical phenotypes under the null
hypothesis (see Fig. 6). The sample size, allele frequency,
genotypic effect, degree of interaction and genetic models
all have impacts on the power. The power increases as the
degree of interaction increases and consistent higher power
is observed for the multiplicative model than the threshold
model.
3.2. Application to real data examples

3.2.1. Schizophrenia data

To show the utility of the proposed entropy-based test,
we apply it to two real data sets. In the first data set, three
genes, namely neuregulin 1 (NRG1, 8p22-p11, MIM
142445), G72 (13q34, MIM 607408) and regulator of G-
protein signaling-4 (RGS4, 1q21-q22, MIM 602516), are
thought to converge functionally upon schizophrenia by
influencing synaptic plasticity and the cortical microcircui-
try (Harrison and Weinberger, 2005; Yue et al., 2007). A
total of 13 SNPs, including 7 from gene NRG1, 3 from gene
G72 and 3 from gene RGS4, are genotyped in 339
schizophrenia patients and 339 matched controls in a
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Chinese Han population. All SNPs are in Hardy–Weinberg
Equilibrium (HWE). Prior reports suggest that variations
in these genes might increase the risk of developing
schizophrenia, and hence these three genes serve as
candidate genes for an association study.

Seven of the 13 SNPs are identified to be associated with
schizophrenia by using standard w2 test, including three
functional polymorphic markers NRG1 (rs3924999), NRG1

(rs3735774) and G72 (rs2391191); two intronic SNPs,
NRG1 (rs2919390) and NRG1 (rs6988339); and one 30UTR
SNP, RGS4 (rs10759); and one 50UTR SNP, NRG1

(SNP8NRG221533). Two functional polymorphic markers
NRG1 (rs3924999) and NRG1 (rs3735774) are known to
encode the glial growth factor (GGF2) and the sensory and
motor neuron-derived factor (SMDF), respectively. The
inactivation of SMDF cause marked neuronal abnormal-
ities as it might act as ‘‘glial growth factors’’ (Kirov et al.,
2005). All the three SNPs within gene NRG1 are in linkage
equilibrium (data not shown). Both analysis about inter-
action among SNPs and association analysis between
disease loci and clinical phenotypes in the following focus
on these seven SNPs within three genes. Table 2 shows the
P values of the entropy-based statistic for testing the
interactions between two SNPs within schizophrenia-
associated gene NRG1. For comparison, Table 2 also
includes the P values for standard w2-statistic. It is evident
that P values of the entropy-based test are smaller
compared to those of the standard w2 test.
Table 2

Interaction test between two SNPs at NRG1

Interaction marker pair P value for 2nDDS P value for w2

rs3924999 and rs3735774 0.032 0.045

rs3924999 and rs2919390 0.002 0.002

rs3735774 and rs2919390 0.005 0.020

rs3735774 and rs6988339 0.014 0.037

rs2919390 and rs6988339 1.81E�05 2.69E�05

Table 3

Interaction tests among NRG1, RGS4 and G72

Schizophrenia-associated SNPs with interactive effects

Three SNPs

NRG(SNP8NRG221533), NRG1 (rs3924999), NRG1 (rs2919

G72 (rs2391191), NRG1 (rs3924999), NRG1 (rs2919

G72 (rs2391191), NRG1 (rs2919390), NRG1 (rs6988

NRG1 (rs3924999), NRG1 (rs3735774), NRG1 (rs2919

NRG1 (rs3924999), NRG1 (rs2919390), NRG1 (rs6988

NRG1 (rs3735774), NRG1 (rs2919390), NRG1 (rs6988

NRG1 (rs3924999), NRG1 (rs2919390), RGS4 (rs1075

NRG1 (rs3924999), NRG1 (rs6988339), RGS4 (rs1075

NRG1 (rs2919390), NRG1 (rs6988339), RGS4 (rs1075

Four SNPs

NRG(SNP8NRG221533), NRG1 (rs3924999), NRG1 (rs2919

NRG(SNP8NRG221533), NRG1 (rs2919390), NRG1 (rs6988

NRG1 (rs3924999), NRG1 (rs2919390), NRG1 (rs6988
We start with interaction test for two SNPs and
gradually increase the number of SNPs in the model.
Table 3 shows the result of three-way and four-way
interactions among these three genes, NRG1, RGS4 and
G72. The interaction results indicate that there is a complex
interaction network structure among these three genes. The
interaction effects between two functional polymorphic
markers NRG1 (rs3924999) and NRG1 (rs3735774) are well
characterized through the test (Table 3). Another signifi-
cant finding is that there are significant interactions
between gene NRG1 and genes RGS4 and G72, which has
been identified and validated by real experiments (Kirov et
al., 2005; Thaminy et al., 2003). These results further
indicate the power and robustness of the proposed
approach. We list all the significant disease loci combina-
tions that contribute to a clinical phenotype (Supplemen-
tary). There are total 30 clinical phenotypes. The SNPs are
listed sequentially as the order they significantly entered
into the model. From the table, we can construct the
interaction network that associates with a clinical pheno-
type. The most important functional loci can be easily seen
from the table. For example, NRG1 (rs3735774) is the most
important one associated with the clinical phenotype
‘‘delusions’’ from a sequential point of view. To further
clearly show the interaction network, we can construct
interaction tree-diagrams for each clinical phenotype. Here
we choose the first clinical phenotype to demonstrate the
idea. Fig. 7 shows the interaction network in which NRG1

(rs3735774) is the single SNP showing significance for a
single SNP test. Then, we keep NRG1 (rs3735774) in the
model and add another SNP, which leads to G72

(rs2391191) and NRG1 (rs3924999) significantly. Keep
adding more loci, we get the sequential tree structure. It
can be easily seen from the graph that NRG1 (rs3735774) is
the major locus that interacts with other loci to affect the
phenotype ‘‘delusions’’. We also see two paths containing
the same set of loci, namely NRG1 (rs3735774)–NRG1

(rs3924999)–G72 (rs2391191) and NRG1 (rs3735774)–NRG1

(rs3924999)–G72 (rs2391191). This information indicates
2nDDS P value

390) 38.130 0.0085

390) 33.293 0.0313

339) 43.028 0.0020

390) 42.686 0.0022

339) 54.194 5.41E�05

339) 50.338 1.98E�04

9) 36.109 0.0149

9) 33.075 0.0331

9) 41.346 0.0034

390), NRG1 (rs6988339) 103.27 0.0092

339), RGS4 (rs10759) 98.949 0.0193

339), RGS4 (rs10759) 107.200 0.0045
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that the final interaction sets are not affected by the order of
loci added to the model. It is interesting to note that for all
three-SNP interacting patterns detected, the highest entropy
is always obtained with the order of 4–3–2. This information
shows that SNP 4 (NRG1-rs3735774) is the most important
one in determining most clinical phenotypes of schizophre-
nia disease followed by SNP 3 (NRG1-rs3924999) and SNP
2 (G72-rs2391191). If we slightly change the selection
procedure by only keeping those patterns with highest
entropy measure at each selection step, this pattern will be
the one left in the end. Since SNP 4 and 3 are two known
functional SNPs in determining schizophrenia disease, this
piece of information provides an indirect support of the
approach.

3.2.2. Malaria data

The second data set is related to a birth cohort study that
recorded the incidence of hospital admission with malaria
and severe malaria from Kilifi District Hospital on the
coast of Kenya in Africa (Williams et al., 2005). A total of
2104 children were genotyped for both hemoglobin (Hb)
and aþ-thalassemia genes to test their interaction. The data
2 3

76521531

4

Fig. 7. The diagram of the interaction network that contributes to a

positive clinical symptom, delusions of schizophrenia, where 1 ¼ NRG1

(SNP8NRG221533), 2 ¼ G72 (rs2391191), 3 ¼ NRG1 (rs3924999), 4 ¼

NRG1 (rs3735774), 5 ¼ NRG1 (rs2919390), 6 ¼ NRG1 (rs6988339), 7 ¼

RGS4 (rs10759); 3 and 4 are two functional polymorphic markers.

Table 4

Interaction test between genes Hb and aþ-thalassemia

Hb aþ-Thalassemia Malaria admission P value

No. of cases No. of controls Wald Testa

HbAA aa=aa 168 458

�a=aa 187 680

�a=aa 56 246

HbAS aa=aa 6 107 0.026

�a=aa 9 141

�a=aa 10 36
set was analyzed by using a Poisson regression analysis
performed by Williams et al. (2005). We particularly
choose this data set in a purpose to see if our approach
gives similar answer. We applied the entropy-based statistic
to this data set to test interaction between the Hb and
aþ-thalassemia genes. The results are summarized in
Table 4. For comparison, Table 4 also lists P values obtained
by using Poisson regression analysis (Williams et al., 2005).
Both approaches end up with the same interaction result
between hemoglobin (Hb) and aþ-thalassemia genes. The P

values of the entropy-based statistic are comparable to those
of the Poisson regression analysis.

4. Discussion

Complex diseases may be linked to more than one
chromosomal region and may be associated with more than
one gene. They are likely to be controlled by a complex
genetic mechanism, with minor-to-moderate effect size per
gene (Schaid et al., 2005). To consider these problems,
multiple-stage strategies should be applied. First, we can
identify the main effects of genes with moderate or large effect
size; then we may focus on the complex interaction detection
among genes with small effect size. Subsequently, we try to
detect gene–environment interactions. The purpose of this
article is to present a new framework for the identification of
interactions among multiple disease loci and mapping the
association between disease loci and clinical phenotypes.
There are two ways to increase the power of an

association test. One method is to reduce the degrees of
freedom, and another way is to identify appropriate
mathematical forms that can be used to develop test
statistic with high power (Zhao et al., 2005). The standard
w2 test is conducted based on the linear transformations of
genotype frequencies and hence is not the uniform most
powerful test (Tzeng et al., 2003). In contrasts, the entropy-
based test is based on the non-linear transformation of
genotype frequencies which amplifies the difference in
genotype frequencies between equilibrium (independence)
and non-equilibrium (interaction) state of a genetic locus
system and consequently leads to substantial power
increase (Zhao et al., 2005). From a statistical physics
point of view, entropy measures the degree of the
Severe malaria P value

Entropy-

based test

No. of cases No. of controlsWald Testa Entropy-

based test

67 559

53 814

17 285

0.038 0 113 0.0012 0.0043

2 148

5 41
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non-structure of a system. The difference of allele
frequencies among affected and unaffected populations
reflects the degree of non-structure of a complex disease,
which indicates that there may be an association between a
locus and a disease (Skol et al., 2006). Moreover,
differences among genotype combination frequencies as a
system between the observed data and the one assuming no
interaction reflect the degree of the non-structure change
for a complex disease, which reflects the perturbations of
the underlying genetic factors conferring a disease. Alter-
nately, it suggests that there exists interactions among
multiple loci. Therefore, we can test the interactions among
multiple loci by comparing the entropy difference of
multiple loci between the observed entropy and the entropy
assuming no interaction.

Such a novel approach using entropy-based test for
interaction detection displays several advantages in a
case-only design. First, interactions among multiple loci
can be characterized by the entropy of a locus system.
Therefore, entropy-based statistics for detection of inter-
action among multiple loci have good biological inter-
pretation. Second, the new model can consider the
nonlinear transformation of frequencies of joint genotypes
in a genetic system. This might explain why the entropy-
based statistic for detection of interaction among multiple
loci has higher power than the traditional w2 test. Third,
since we deal with the interactive loci as a locus system, we
can simply detect the association of multiple loci with a
clinical phenotype and identify the most functional ones
that interact with other loci to contribute to a clinical
phenotype.

We conduct computer simulations to investigate the
statistical behavior of the new approach. The results
show that the null distribution of the proposed entropy-
based test asymptotically follows a central w2 distribu-
tion. The entropy-based test outperforms the standard w2

test in terms of type I error rate control and testing
power. We further apply the proposed entropy-
based statistic to two real data sets and genetic interactions
are detected among the candidate genes. The P values
obtained using our approach are smaller than that
of the w2 test and are comparable to the Poisson regression
analysis. Here we focus our discussion on the schizophrenia
data set.

Schizophrenia is a putative neuro-developmental dis-
order with a glutamatergic transmission abnormality. The
combined effects of gene variability, including variations
among NRG1, G72 and RGS4, on schizophrenia could
influence synaptic plasticity and the cortical microcircuitry
via N-methyl-D-aspartate (NMDA) receptors (Harrison
and Weinberger, 2005; Lewis and Levitt, 2002). Several
functional studies suggested an interaction between NRG1

and RGS4 or G72. For example, RGS4 interacts with
ErbB3, which may be of relevance, since ErbB3 is an NRG1

receptor with down-regulated mRNA expression in schizo-
phrenic brains (Thaminy et al., 2003). In the present study,
through using of the entropy, we provide additional
support for the contributions of NRG1, G72 and RGS4

variants to schizophrenia. These findings also validate our
new approach. The genetic interaction network constructed
based on the entropy test provides very useful and
informative information on understanding how genes
interact to contribute to a clinical phenotype, and which
locus is the most important one. Further lab verification is
need to validate the result. For example, we may mutate
SNP NRG1 (rs3735774) within gene NRG1 to see if there is
still phenotype ‘‘delusions’’. For the 30 clinical phenotypes,
most interaction networks contain the two functional
SNPs, NRG1 (rs3924999) and NRG1 (rs3735774). These
results confirm the importance of these two loci associated
with the schizophrenia disease.
In a conclusion, we develop a measure of interactions

among multiple loci and introduce a new entropy-based
statistic to test interactions among multiple loci. We
explore allele and loci heterogeneity, identify the relation-
ships among disease genes and clinical phenotypes by
introducing the information theory into genetics. Our
approach has potential to integrate both clinical phenotype
and interactions among multiple loci into genome-wide
association analysis of complex human diseases. However,
like all population-based analysis for association studies,
the entropy-based statistic for testing interaction among
multiple loci also has its limitations, (1) it does not consider
the environmental effects as well as the gene–environment
interactions; (2) it will lose power at the present of
pleiotropy; and (3) it is only valid under the assumption
of linkage equilibrium among testing loci. It deserves a
more close investigation about these limitations in the
future.
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Appendix A. DS ¼
1

nD
log

Lobserve

Lind

We consider a locus system with s bi-allelic loci each with
genotypes 0, 1, 2 and with hi

¼ ðhi
1; h

i
2; . . . ; h

i
sÞ as the ith

joint genotype ðhi
k 2 f0; 1; 2g; 1pkpsÞ with frequency pi in

cases. Denote nD ¼
P3s

i¼1 ni the number of cases, where ni
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represents the number of subjects with the ith joint
genotype in cases, that is, pi ¼

ni

nD. Denote pðk;2Þ and pðk;1Þ
be, respectively, the marginal frequencies of genotypes 2
and 1 at locus 1pkps. The frequency of the ith joint
genotype under no interaction is given by product of the
marginal genotype frequencies:

qi ¼
Ys

k¼1

p
xði;2;kÞ
ðk;2Þ p

xði;1;kÞ
ðk;1Þ p

xði;0;kÞ
ðk;0Þ , (A.1)

where

xði; j; kÞ ¼
1; hi

k ¼ j;

0; hi
kaj:

(

Define Di ¼ pi � qi: We can easily get
P3s

i¼1 Di ¼ 0:
Denote Lobserve and Sobserve be the likelihood and entropy
of a system for the observation and Lind and Sind be for the
case under no interaction. Then

1

nD
logLobserve ¼

X3s

i¼1

ni

nD
log pi

¼
X3s

i¼1

pi log pi ¼ �Sobserve, ðA:2Þ

1

nD
logLind ¼

X3s

i¼1

ni

nD
log qi ¼

X3s

i¼1

ðqi þ DiÞ log qi

¼ � Sind þ
X3s

i¼1

Di log qi|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
O1

, ðA:3Þ

where

O1 ¼
X3s

i¼1

Di log
Ys

k¼1

p
xði;2;kÞ
ðk;2Þ p

xði;1;kÞ
ðk;1Þ p

xði;0;kÞ
ðk;0Þ

" #

¼
X3s

i¼1

Xs

k¼1

Dixði; 2; kÞ log pðk;2Þ

þ
X3s

i¼1

Xs

k¼1

Dixði; 1; kÞ log pðk;1Þ

þ
X3s

i¼1

Xs

k¼1

Dixði; 0; kÞ log pðk;0Þ

¼
Xs

k¼1

log pðk;2Þ

X3s

i¼1

Dixði; 2; kÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
O2

0
BBBB@

1
CCCCA

þ
Xs

k¼1

log pðk;1Þ

X3s

i¼1

Dixði; 1; kÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
O3

0
BBBB@

1
CCCCA ðA:4Þ
and

O2 ¼
X3s

i¼1

Dixði; 2; kÞ ¼
X3s

i¼1

xði; 2; kÞðpi � qiÞ

¼
X3s

i¼1

xði; 2; kÞpi �
X3s

i¼1

xði; 2; kÞ
Ys

l¼1

ðp
xði;2;lÞ
ðl;2Þ p

xði;1;lÞ
ðl;1Þ p

xði;0;lÞ
ðl;0Þ Þ

¼ pðk;2Þ �
X3s

i¼1

pðk;2Þ

Ys

l¼1;lak

ðp
xði;2;lÞ
ðl;2Þ p

xði;1;lÞ
ðl;1Þ p

xði;0;lÞ
ðl;0Þ Þ

¼ pðk;2Þ � pðk;2Þ

Ys

l¼1;lak

X3s

i¼1

p
xði;2;lÞ
ðl;2Þ p

xði;1;lÞ
ðl;1Þ p

xði;0;lÞ
ðl;0Þ

 !

¼ pðk;2Þ � pðk;2Þ

Ys

l¼1;lak

1 ¼ 0. ðA:5Þ

Similarly, we obtainO3 ¼ 0. Thus, we get 1
nD logLind ¼ �Sind .

If there are some disease loci with multiple alleles, by the
similar argument, the results are also true.
Appendix B. The entropy of a clinical phenotype and the

likelihood of a multinomial distribution

We consider m disease loci as a locus system and a
clinical phenotypeC. The entropy of the clinical phenotype
C is calculated as

SðCÞ ¼ �

PW
i¼1

kD
i

KD log
kD

i

KD

logW
; W41;

0; W ¼ 1;

8><
>: (B.1)

where KD is the number of cases with clinical phenotype C,
fkD

i g
W
i¼1 is the number of cases with joint genotype hi in KD

and W is the number of present joint genotypes in this
locus system. Also, fkD

i g
W
i¼1 follows a multinomial distribu-

tion. We have

LðfkD
i g

W
i¼1Þ ¼

YW
i¼1

kD
i

KD

� �kD
i

. (B.2)

Taking the natural logarithm at both sides of the above
equation, we get

logðLðfkD
i g

W
i¼1ÞÞ ¼

XW
i¼1

kD
i log

kD
i

KD
¼ KD

XW
i¼1

kD
i

KD
log

kD
i

KD

¼ � KDSðCÞ logW . ðB:3Þ

So,

LðfkD
i g

W
i¼1Þ ¼ e�KDSðCÞ logW . (B.4)

Appendix C. The frequencies of genotypes in cases under

two-locus threshold model

From the two-locus threshold model in Table 1, we get
the penetrance of genotypes AABB, AABb, AaBB and
AaBb is gð1þyÞ

1þgð1þyÞ, the penetrance of genotypes AAbb, Aabb,
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aaBb and aabb is g
1þg. So, the prevalence of disease is

PðDÞ ¼ PAPB

gð1þ yÞ
1þ gð1þ yÞ

ð1þ Pa þ Pb þ PaPbÞ

þ
g

1þ g
ðP2

a þ P2
b � P2

aP2
bÞ, ðC:1Þ

where Pa ¼ 1� PA;Pb ¼ 1� PB.
Then, the frequencies of genotypes in cases under a

threshold model are
BB
 Bb
 bb
AA
 P2
AP2

B

PðDÞ

gð1þ yÞ
1þ gð1þ yÞ
2P2
APBPb

PðDÞ

gð1þ yÞ
1þ gð1þ yÞ
P2
AP2

b

PðDÞ

g
1þ g
Aa
 2PAPaP2
B

PðDÞ

gð1þ yÞ
1þ gð1þ yÞ
4PAPaPBPb

PðDÞ

gð1þ yÞ
1þ gð1þ yÞ
2PaPAP2
B

PðDÞ

g
1þ g
aa
 P2
aP2

B

PðDÞ

g
1þ g
2P2
aPBPb

PðDÞ

g
1þ g
P2
aP2

b

PðDÞ

g
1þ g
where PðDÞ is referred to (C.1).
Under a two-locus multiplicative model, the frequencies

of genotypes in cases can similarly be got.

Appendix D. Supplementary data

Supplementary data associated with this article
can be found in the online version at doi:10.1016/
j.jtbi.2007.10.001.
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